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A number of models of rubber elasticity are described in terms of their physics and then compared with 
experimental data. The models that are examined all assume that entanglements act along the entire 
contour length of a network chain, either discretely or in a mean field manner. The experiment that is 
used is the uniaxial extension-compression behaviour of several different networks. The mean field 
localization or random tube model and the discrete hoop model give the most satisfactory fit to the data. 
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INTRODUCTION 

The number of theoretical models dealing with entangle- 
ment effects in rubber elasticity is large and continues to 
grow. In this paper we review the relative successes of 
some of these theories in fitting data from a range of 
crosslinked materials in uniaxial extension and com- 
pression. We assess the developments in theory which 
have occurred since the review of Gottlieb and Gaylord 1. 
We will not consider models which are purely phenomeno- 
logical, or those whose physical content seems to us to 
be unreasonable. In particular, the constrained-junction 
fluctuation theory, although having considerable empirical 
success at data fitting, appears fundamentally misguided 
in attributing the effects of entanglement solely to the 
motion of the junctions and not at all to the chains 
themselves and therefore isolating the equilibrium elastic 
response of a network from the rubbery plateau response 
of its parent melt. We therefore will not examine this 
theory here. Rather, we look at models in which the 
constraining effects of entanglements on the lateral 
motion of chains is modelled by discrete slip-links, hoops, 
and by mean field localization effects modelled by tubes. 
We will discuss the physical differences between the 
models in the text. All necessary mathematical formulae 
are given in the Appendices. 

In Figure I we plot stress against strain for several 
data sets in a scaled form. The solid curve is the function 
(2 -2 -2 ) ,  the prediction of the simplest phantom chain 
theories of network elasticity. All the data can be scaled 
to fit almost exactly to the phantom chain theory for 
compression, whilst in extension a small but significant 
difference is apparent. It should be borne in mind in all 
that follows that the differences between the theories 
being compared are small compared with the absolute 
magnitude of the stresses, and that there is a surprising 
degree of uniformity of all the data sets considered. The 
M ooney-Rivlin plot (reduced stress f*=a/(2-2  -2) 
against 2-1) emphasizes differences and therefore provides 
a better representation for assessing the predictions of the 
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models. However, it also emphasizes the scatter of the 
experimental points, particularly close to 2=  1. Finally, 
we should not place too great an importance on the 
theoretical fit with any one data set. 

SLIP-LINK/HOOP MODELS 

The viscoelasticity theory of Doi and Edwards z refers to 
both the ideas of slip-links and tubes. Marrucci 3, and 
later Graessley 4, applied the slip-link idea explicitly to 
trapped entanglements in crosslinked networks. The free 
energy (strain-dependent part only) may be written as 
equation (A1) in Appendix A. It has already been shown 1 
that this Doi-Edwards-Marrucci-Graessley (DEMG) 
model provides a very poor representation of the data. 
Therefore, we will not plot the curve, but will only 
describe the concepts underlying this model for compari- 
son to what follows. 
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Figure 1 Stress-strain curves for several networks in uniaxial 
extension-compression, scaled to fit the Gaussian model stress-strain 
relation, (r=2-- 1/2 2 (in kg cm-2), x ,  Natural rubber12; C), PDMSla; 
+,  rubber (8% S)14; A,  PDMS 15 
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In the D E M G  model a chain is divided into a fixed 
number of subchains by slip-links. The subchains are 
taken to deform affinely but the number  of segments in 
each subchain varies with strain and is determined by 
requiring there to be equal tension in each subchain. 
Physically, the model applies the 'equilibration'  process 
of Doi and Edwards 2 while suppressing chain end 
retraction. 

The hoop model 5 considers a chain crosslinked at its 
ends and divided into N subchains by N - 1  hoops (or 
slip-links) representing trapped entanglements. Chain 
units are free to move through the hoops and redistribute 
themselves between the subchains so as to minimize the 
free energy of the total chain. The crosslinks and hoop 
positions are both assumed to deform affinely. The 
chemical potential for increasing the contour length of 
chain between each pair of hoops is calculated, and it is 
this quantity rather than the tension, which is taken to 
be constant at all points on the chain. The resulting free 
energy expression (equation (A2)) has two parameters,  
a ~ N v  where v is the number  of chains per unit volume, 
and b ~ v. Thus in a highly entangled network the second 
term becomes negligible with respect to the first. The 
product N v  is the total number  of hoops per volume. It 
is assumed that adding crosslinks to the system does not 
appreciably change the degree of entanglement, so that 
a remains independent of crosslink density and thus N 
varies inversely with v. The number  of hoops per unit 
length along any one chain is proport ional  to the segment 
density p, and since the total contour length per unit 
volume is p, a ~ p  2, i.e. a is proport ional  to the plateau 
modulus of the uncrosslinked system. 

If the contour length in each subchain is constrained 
to be its most  probable value then the hoop model 
becomes the D E M G  model and equation (A2) reduces 
to equation (A1). It is the fluctuations about  this value 
that produce the extra terms appearing in equation (A2). 
We note that the case N = 2  corresponds to the Kosc 
model 6. The derivation of Adolf 7 attempts the same 
general N case as Higgs and Ball 5, but incorporates 
pre-averaging simplifications which severely affect the 
final answer given in equation (A3) (in particular the 
affine deformation function terms ( M  2) and ( m )  2 
defined in Appendix B become indistinguishable). Such 
differences are crucial in determining the shape of the 
stress-strain curve. We therefore do not use the Adolf 
model equation (A3) but instead use the more exact hoop 
model equation (A2) for fitting the data. 

The replica slip-link model 8 considers one very long 
chain which is crosslinked to itself N¢ times and which 
is linked to itself via slip-links N s times. This chain 
represents the whole network, i.e. the ends of the 
individual chains in a real network are assumed to be 
unimportant.  Slip-links may slide freely some distance 
up and down the network chains. This distance is 
characterized by the slippage parameter  q. The replica 
formalism is used to calculate the free energy by 
considering all configurations of the network consistent 
with one arrangement of the slip-link points, and 
subsequently averaging the result over all ways of 
arranging the slip-link points along the contour of the 
original long chain. It thus avoids having to assume an 
affine deformation of the slip-link points. There is an 
important  difference between a slip-link of the replica 
slip-link model, which is not fixed in space and only 
affects two network chains and a hoop of the hoop model, 

which is fixed in space and which represents the constraints 
of all of the other network chains on the single network 
chain being considered. 

The free energy of the replica model (equation (A4)) 
is a sum of crosslink and entanglement terms. The 
entanglement contribution is a function of the slippage 
parameter  r/. A separate theoretical analysis 8 based on 
free energy minimization estimates r/to be approximately 
0.234. Edwards and Vilgis 9 have given a 'Flory segment' 
argument for the slip-link free energy. They show that 
this single chain approach,  which has some similarity to 
the hoop model 5, can be tailored to match the replica 
result equation (A4) at small strains. 

The data points in Figure s  2 and 3 are the same as in 
F i g u r e  I plotted in the Mooney-Rivl in form using the 
same scaling factors. Therefore the data should pass as 
closely as possible through the point f *  = l at )o = 1. The 
theory curves are the least squares fits to the data on 
natural rubber 12. Due to the close coincidence of the 
data sets there is no significant difference in the plots if 
best fits to another data set are shown instead. 

The hoop model fits the flatter Mooney-Rivl in curve 
in compression much better than the replica slip-link 
model, whilst the replica model is slightly better in 
extension. The fitting parameters and the mean square 
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Figure 2 Data from Figure 1 plotted in the Mooney Rivlin form. 
Curves are best fits to the natural rubber network (×). Theoretical 
curves are for: , Hoop model (equation (A2)); . . . .  , replica 
slip-link model (equation (A4)). See Table 1 for fitting parameters and 
their best-fit values (f* units are kg cm -2) 
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, random 
tube or localization model (equation (A5)); . . . .  , straight tube model 
(equation (A7)). See Table 1 for fitting parameters and their best-fit 
values (.f* units are kg cm -z) 
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Table 1 Best-fit parameter values used in Figures 2 and 3 

Natural rubber 12 P D M S  13 

Model Parameters b/a q 10 3 x A2t b/a tl 10 3 x A 2 

Hoop (A2) a, b 0.0" - 4.3 - - 2.0 
Replica slip-link (A4) a, b, t/ 0.66 0.82 5.5 0.65 0.64 1.8 

0.94 0.16 2.0 
0.0' 0.02 16.7 0.0" 0.02 4.0 

Random tube (A5) a, b 0.096 - 6.9 0.09 - 0.9 
Straight tube (A7) a, b 0.25 - 22.0 0.15 - 5.4 

* b is set equal to zero (see text) 
t A 2= mean square difference between theory and data per data point. (Values are comparable between models but not between columns since 

they depend on the unscaled values of f*) 

e r r o r s ,  A 2, to two of the data sets are shown in Table 1 
for numerical comparison. 

For  the hoop model a direct best fit procedure yields 
a negative value for the coefficient b. This corresponds 
to a negative number  of network chains and is thus 
physically meaningless. The best fit (plotted in Figure 2) 
which is physically acceptable is achieved by setting 
b = 0 corresponding to a modulus which is independent 
of crosslink density. This is clearly a serious failing of 
the model. It does however, at least suggest that the 
number  of entanglements per chain is large, and that 
entanglements dominate the elasticity. The fact that 
different data sets should superimpose so closely when 
scaled also indicates that the entanglement contribution 
to the stress is dominant.  

In the replica slip-link model b/a = Nc /N  s, the ratio of 
number of crosslinks to slip-links. This is found to be 
somewhat less than 1 in all cases, implying slip-links are 
more important  than crosslinks but not completely 
dominating. The stress contribution due to entangle- 
ments in the model is very sensitive to the value of r/, 
making the function difficult to deal with numerically 
and not always yielding a unique best fit. For  example, 
Table I shows that two almost equally good fits to the 
poly(dimethylsiloxane) (PDMS) data were obtained with 
very different parameter  values. One of the r/values, 0.64, 
implies that a slip-link can slide a distance several times 
the mean distance between slip-links. The other value, 
0.16, represents a rather more restricted ability to slip. 
Worse fits were obtained at intermediate ~/. Since the 
hoop model suggests that the cross-link term is negligible 
(b=0)  we also fitted the replica slip-link model using 
b = 0 .  A rather poor  fit was obtained, as judged by the 
A 2 value in Table 1, and the r/was found to be very small 
(we note however, that while this is very different from 
the t/ obtained using the full three-parameter formula 
similarly small values (r/~0.05) were also obtained in a 
study of polybutadiene networks by Hvidt16). Such a 
small value implies that the slip-links were almost fixed 
in position along the chain contours. Finally we note 
that other experimental studies have found q=0 .4  
(polyisoprene ~7) and r/= 1.1 (polyethylenela). There is 
thus no consensus at all on the value of r/ obtained by 
various data fits. We therefore conclude that whilst the 
full three-parameter replica model provides a reasonable 
fit to many experimental data, the physical interpretation 
of the fitted values of the parameters N¢, Ns, and 
especially r/is unclear and so must be viewed with extreme 
caution. 

T U B E / L O C A L I Z A T I O N  M O D E L S  

Of the several versions of the tube model that have 
been proposed, the most empirically successful is the 
localization model of Gaylord and Douglas 1°. The free 
energy (equation (A5)) consists of two terms: one is due 
to chain connectivity and has the Gaussian form, and is 
proportional  to the number of crosslinks; another term 
represents the loss of degrees of freedom of the segments 
in the chains due to their spatial localization resulting 
from entanglements and packing. The magnitude of the 
localization or constraint parameter  in the undeformed 
network 4o is determined by representing the localization 
effect with a tube which is along the chain contour and 
has a length proportional  to the chain contour length. 
The tube effectively represents the hard core volume of 
the chain, which is the ultimate physical basis for the 
chains being prevented from crossing and resulting in 
entanglement and packing effects. It then follows from a 
space-filling tube argument 1° that the localization free 
energy term is proport ional  to the square of the segment 
density and hence to the plateau modulus of the uncross- 
linked polymer. The chains are assumed to deform 
affinely so that the connectivity term has the Gaussian 
phantom chain network form. The deformation depend- 
ence of the localization term is determined by recognizing 
that the random orientation of network chains in the 
undeformed state requires a random tube around each 
chain, then by coarse graining this random tube is 
separated into tube sections lying along the principal 
deformation axes. Since the hard core volume of a chain 
is strain invariant, it follows that the diameter of the tube 
sections change during a constant volume deformation 
so as to preserve tube section volume. We note there is 
also a logarithmic term in the random tube model 1° 
which is not relevant in the constant volume deformations 
which we consider here. 

The straight tube model of Marrucci ~ places each 
randomly oriented network chain in a straight tube. The 
tube length is that of the end-to-end chain vector and 
deforms affinely while the tube diameter is assumed to 
change so as to maintain the straight tube volume. It has 
been shown I that equation (A6) obtained by Marrucci 11 
gives a worse fit to the data than the Gaylord-Douglas  
model. However,  Marrucci uses several unacceptable 
mathematical approximations. For example, if the straight 
tube volume is preserved, then the diameter d should 
vary as 1/d2, ,~(M) rather than ( M 2 )  1/2 as is assumed 
by Marrucci. We thus test the exact straight tube result 
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given by equation (A7), rather than Marrucci's approxi- 
mate result equation (A6) which does not (and need not) 
satisfy the Valanis-Landel separability condition. 

In Figure 3 we plot the random tube model (equation 
(A5)) and the exact straight tube model (equation (A7)) 
using the best fit parameters to the Rivlin and Saunders 
data 12 given in Table I. The fit of the random tube model 
is comparable to that of the replica slip-link and the hoop 
models, giving a much better A 2 value for PDMS and a 
worse value for natural rubber. The exact straight tube 
model works considerably worse than any of these other 
three models in both cases and is not much of an improve- 
ment over the fit obtained using the corresponding 
approximate expression. 

DISCUSSION 

The random tube model, the replica slip-link model and 
the hoop model all predict that the modulus contains a 
term which is proportional to the square of the segment 
density p2 and thus the plateau modulus. Another term 
in these models increases linearly with the crosslink 
density. This is found to be the case experimentally, for 
example in polybutadiene networks ~9 and ethylene 
propylene copolymer networks 2°. Whilst the modulus 
extrapolates smoothly to the plateau modulus of the 
uncrosslinked system as the crosslink density is decreased, 
the large deformation behaviour of entanglements leads 
to an entirely different stress-strain behaviour in the 
melt, where entanglements are transient, than in the 
corresponding network where the entanglements are 
permanent. 

The data used above was chosen from the relatively 
small number of experiments which measure stress in 
both compression and extension on the same samples. 
It is well known that if extension alone is considered the 
data can be well represented by the phenomenological 
Mooney Rivlin equation. 

f *  =2C 1 + 2C2/J, 

Fitting the straight line Mooney Rivlin behaviour in 
extension is not a sufficiently stringent test for models 
having two or three parameters 1. It has been shown that 
the replica slip-link model provides good fits for several 
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Figure 4 Mooney-Rivlin plot of the extension and small compression 
region. Data is from Figure 2. Theoretical curves are for: , random 
tube model (equation (A5)); . . . .  , hoop model (equation (A2)); 
. . . .  , replica slip-link model (equation (A4)). The fitting parameters 
were taken from Figures 2 and 3 and are based on fitting the entire data 
range rather than the more limited range shown ( f*  units are kg cm - 2) 

experiments in extension only 16-1s. In Figure 4 we plot 
the region 2-1~< 1.2 on an expanded scale. The same 
fitting parameters are used as in Figures 2 and 3, i.e. they 
are the best fits over the whole range of 2, not just for 
extension. Agreement is fair, although not particularly 
good when viewed on this scale. The replica slip-link 
model appears to give the best fit in this region, although 
A 2 values for the whole range are no better than those 
of the random tube and the hoop models (we note that 
the random tube model can produce Mooney-Rivlin 
behaviour exactly by choosing the tube diameter to 
deform affinelyl°). 

Although the Mooney-Rivlin coefficients have no 
direct physical interpretation, we may use them to 
indicate whether entanglements yield a significant pro- 
portion of the stress in a network. On the scaled 
Mooney-Rivlin plots the gradient of the apparent straight 
line in extension is g = C2/(C1 + C2). For a phantom chain 
network g = C2 = 0. Values ofg calculated from published 
Mooney-Rivlin coefficients (e.g. 15, 17-20) cluster in 
the range 0.3-0.43. The trend is towards increasing g 
with increasing length of chain between crosslinks, i.e. 
increasing number of entanglements between crosslinks. 
This point has been discussed more fully elsewhere 2~. 
The upper limit of 0.43+0.02 appears to be fairly 
constant in many materials, and corresponds to a 
network in which the entanglement contribution to stress 
dominates the crosslink contribution. 

Finally we should note the elegant experiments of 
Batsberg and Kramer 22'23 and Hvidt 16 in which cross- 
links are added to a melt which is frozen in a strained 
state. Entanglement effects are demonstrated unam- 
biguously without recourse to any particular theory. 

We wish to emphasize the broad consensus of experi- 
mental and theoretical ideas. Remaining discrepancies 
are at the level of a few per cent. The simple concepts of 
slip-links, hoops, localization and tubes have all had 
surprising success at modelling the complex nature of 
topological entanglements. 

CONCLUSIONS 

A wealth of experimental evidence clearly demonstrates 
the importance of the entanglement contribution to the 
stress behaviour of a polymer melt and its rather 
significant carryover to the stress-strain behaviour of the 
polymer when it is crosslinked into a network. 

Data from a wide range of synthetic and natural 
rubbers can be closely superimposed in a scaled form. 

The three models giving best fits to the data are the 
localization or random tube model, the hoop model and 
the replica slip-link model. None of these models provides 
an entirely satisfactory description of the data at a 
detailed level, but the discrepancies should not be allowed 
to obscure the good qualitative agreement between 
experiment and theoretical ideas. 
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A P P E N D I X  A 

Free  energy express ions  for var ious  mode l s  in terms of 
the affine de fo rma t ion  re la t ion  M for uniaxia l  ex t ens ion -  
compress ion .  

Sl ip- l ink mode l  3 

F = a ( M )  2 (A1) 

H o o p  mode l  5 

F = a ( ( M ) 2 + ( I n M ) ) + 3 b ( M  2) (A2) 

H o o p  mode l  7 

F = a l n ( M  2 ) + b ( M  2) (A3) 

Repl ica  s l ip- l ink mode l  a 

F = a l ~ ( ( l i + q ) 2 2 2  i + ~  bin(1 + r / 2 2 ) ) + ~ b ( M  2) (A4) 

R a n d o m  tube or  Loca l i za t ion  mode l  1° 

( 2 + 2 2  -1 /2)  
F = a  3 + 3 b ( M 2 )  (A5) 

St ra ight  tube m o d e P  

F = a ( M 2 ) I / 2 + a b ( M  2) ( approx ima te  form) (A6) 

F = a ( M )  + 3 b ( M 2 )  (exact form) (A7) 

A P P E N D I X  B 

Func t i ons  of  the affine de fo rma t ion  re la t ion M appea r ing  
in Append ix  A in terms of the uniaxia l  ex t ens ion -  
compress ion  de fo rma t ion  ra t io  2. 

1 2 1 

I f 2 ~ > l  

s i n h -  1 x 

( M ) =  -t 221/Zx 

where x = + (IA 3 - 11) 1/2 

( In  M )  = In 2 -  1 + - -  

I f 2 < 1  

2 
(M) 

where x = + (123 - 1[) 1/2 

( In  M )  = I n  2 - 1  -t- 

t a n -  z x 

s in -  a x 

22X/2x 

t a n h -  ~ x 
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